4728 Mechanics 1

1 i	$\begin{aligned} & x^{2}+(3 x)^{2}=6^{2} \\ & 10 x^{2}=36 \\ & x=1.9(0) \quad(1.8973 . .) \end{aligned}$	$\begin{aligned} & \hline \text { M1 } \\ & \text { A1 } \\ & \text { A1 } \\ & {[3]} \end{aligned}$	Using Pythagoras, 2 squared terms May be implied Not surd form unless rationalised $(3 \sqrt{ } 10) / 5$, $(6 \sqrt{ } 10) / 10$
ii	$\begin{align*} & \tan \theta=3 x / x(=3 \times 1.9 / 1.9)=3 \\ & \theta=71.6^{\circ} \quad(71.565 . .) \end{align*}$	M1 A2	Must target correct angle. Accept $\sin \theta=3 \times 1.9 / 6$ or $\cos \theta=1.9 / 6$ which give $\theta=71.8^{\circ}, \theta=71.5^{\circ}$ respectively, A1. SR $\theta=71.6^{\circ}$ from $\tan \theta=3 x / x$ if x is incorrect; x used A1, no evidence of x used A2
2 i		$\begin{aligned} & \hline \text { B1 } \\ & \text { B1 } \\ & {[2]} \end{aligned}$	Inverted V shape with straight lines. Starts at origin, ends on t-axis, or horizontal axis if no labelling evident
ii	$\begin{aligned} & 6=3 v / 2 \\ & v=4 \mathrm{~ms}^{-1} \end{aligned}$	$\begin{gathered} \hline \text { M1 } \\ \text { A1 } \\ \text { A1 } \\ {[3]} \end{gathered}$	Not awarded if special (right angled, isosceles) triangle assumed, or $s=(u+v) t / 2$, or max v at specific t.
iii	$\begin{aligned} & \mathrm{T} \text { accn }=4 / 2.4 \text { or } \mathrm{s} \text { accn }=16 /(2 \times 2.4) \\ & \mathrm{T} \text { accn }=12 / 3 \mathrm{~s} \text { or } \mathrm{s} \text { accn }=10 / 3 \\ & \text { Deceleration }=4 /(3-12 / 3) \text { or } 16 / 2(6-10 / 3) \\ & \text { Deceleration }=3 \mathrm{~ms}^{-2} \end{aligned}$	$\begin{aligned} & \hline \text { M1* } \\ & \text { A1 } \\ & \text { D}^{*} \text { M1 } \\ & \text { A1 } \\ & {[4]} \end{aligned}$	Uses $t=v / a$ or $s=v^{2} / 2 a$. May be implied Accept 4/(3-1.67) or 16/2(6-3.33) Accept 3.01; award however $v=4$ obtained in (ii). $a=-3$ gets A0.
3 i	$\begin{align*} & 0.8 \mathrm{gsin} 30 \\ & 0.8 \times 0.2 \\ & 0.8 \times 9.8 \sin 30-T=0.8 \times 0.2 \\ & T=3.76 \mathrm{~N} \tag{AG} \end{align*}$	$\begin{gathered} \hline \text { B1 } \\ \text { B1 } \\ \text { M1 } \\ \text { A1 } \\ {[4]} \end{gathered}$	Not for 3.92 stated without justification Or 0.16 Uses N2L // to slope, 3 non-zero terms, inc ma Not awarded if initial B1 withheld.
ii	$\begin{aligned} & 3.76-F=3 \times 0.2 \\ & F=3.16 \\ & 3.16=\mu \times 3 \times 9.8 \\ & \mu=0.107 \quad(0.10748) \end{aligned}$	M1 A1 A1 M1 A1 [5]	Uses N2L, B alone, 3 non-zero terms Needs correct value of T. May be implied. Uses $F=\mu R$ (Accept with $R=3$, but not with $R=0.8 \mathrm{~g}(\cos 30), F=0.6, F=3.76, F=f($ mass $P)$) Not 0.11, 0.108 (unless it comes from using $\mathrm{g}=9.81$ consistently through question.

4 i	$\begin{aligned} & v^{2}=7^{2}-2 \times 9.8 \times 2.1 \\ & v=2.8 \mathrm{~ms}^{-1} \end{aligned}$	$\begin{gathered} \hline \text { M1 } \\ \text { A1 } \\ \text { A1 } \\ {[3]} \end{gathered}$	Uses $v^{2}=u^{2}-2 \mathrm{gs}$. Accept $7^{2}=u^{2}+2 \mathrm{gs}$
ii	$\begin{aligned} & v=0 \\ & 0^{2}=7^{2}-2 \times 9.8 \mathrm{~s} \\ & s=2.5 \mathrm{~m} \end{aligned}$	B1 M1 A1 [3]	Velocity $=0$ at greatest height Uses $0=u^{2}-2$ gs. Accept $7^{2}=2 \times 9.8$ s.
iii	$v=-5.7$ (or $t=0.71$ oef to reach greatest height) $\begin{aligned} & -5.7=7-9.8 t \text { or } 5.7=(0+) 9.8 T \\ & t=1.3(0) \mathrm{s} \quad(1.2959 . .) \end{aligned}$	B1 M1 A1 [3]	Allows for change of direction Uses $v=u+$ or -gt . Not 1.29 unless obtained from $\mathrm{g}=9.81$ consistently
5 i	$\begin{aligned} & 0.5 \times 6=0.5 v+m(v+1) \\ & 3=0.5 v+m v+m \\ & v(m+0.5)=-m+3 \end{aligned}$ AG	$\begin{gathered} \hline \text { M1 } \\ \text { A1 } \\ \text { A1 } \\ {[3]} \end{gathered}$	Uses CoLM. Includes g throughout MR-1
ii	$\begin{aligned} & \text { Momentum before }=+/-(4 m-0.5 \times 2) \\ & +/-(4 m-0.5 \times 2)=m v+0.5(v+1) \\ & 4 m-0.5 \times 2=m v+0.5(v+1) \\ & v(m+0.5)=4 m-1.5 \end{aligned}$	$\begin{aligned} & \text { B1 } \\ & \text { M1 } \\ & \text { A1 } \\ & \text { A1 } \\ & {[4]} \end{aligned}$	Includes g throughout MR-1 Needs opposite directions in CoLM on "before" side only. RHS in format $a m+b$ or $b+a m$. Ignore values for a and b if quoted.
iii	$\begin{aligned} & 4 m-1.5=-m+3 \\ & 5 m=4.5 \\ & m=0.9 \mathrm{~kg} \\ & 0.9+v(0.9+0.5)=3 \text { or } 4 \times 0.9-1.5= \\ & v(0.9+0.5) \\ & v=(3-0.9) /(0.9+0.5)=2.1 / 1.4 \\ & v=1.5 \mathrm{~ms}^{-1} \end{aligned}$	M1 A1 M1 A1 [4]	Attempts to obtain eqn in 1 variable from answers in (i) and (ii) Ignore $m=-0.5$ if seen Substitutes for $m=0.9$ in any m, v equation obtained earlier.
6 ia b	$\begin{aligned} & \text { Perp = 10 } \cos 20(=9.3967 \text { or } 9.4) \\ & / /=10 \sin 20(=3.4202) \\ & \mu=10 \sin 20 / 10 \cos 20=\tan 20(=3.42 / 9.4) \\ & \mu=0.364 \quad(0.36397 . .) \quad \text { AG } \end{aligned}$	$\begin{gathered} \hline \text { B1 } \\ \text { B1 } \\ {[2]} \\ \text { M1 } \\ \text { A1 } \\ {[2]} \end{gathered}$	Includes g, MR -1 in part (i). Accept -ve values. Must use ' ${ }^{\prime} F_{1}^{\prime}=\mu_{\mathrm{l}}^{\prime} R_{\mathrm{l}}^{\prime}$ Accept after inclusion of g twice
ii	No misread, and resolving of 10 and T required $\begin{aligned} & R=10 \cos 20+T \cos 45 \\ & F=T \cos 45-10 \sin 20 \text { or } T \cos 45=\mu R+ \\ & 10 \sin 20 \\ & T \cos 45-3.42=0.364(9.4+T \cos 45) \\ & 0.707 T-3.42=3.42+0.257 T \\ & 0.45 T=6.84 \\ & T=15.2 \mathrm{~N} \quad(15.209 . .) \end{aligned}$	M1* A1 M1* A1 D*M1 A1 A1 [7]	3 term equation perp plane, 2 unknowns $9.4+0.707 T$ (accept $9.4+.71 T$) 3 term equation // plane, 2 unknowns $0.707 T$ - 3.42 (accept $0.71 T-3.4$) Substitutes for F and R in $F=0.364 R$ Award final A1 only for $T=149 \mathrm{~N}$ after using 10 g for weight

7 i	$\begin{aligned} & a=\mathrm{d} v / \mathrm{d} t \\ & a=6-2 t \mathrm{~ms}^{-2} \end{aligned}$	$\begin{aligned} & \hline \text { M1 } \\ & \text { A1 } \\ & {[2]} \end{aligned}$	Differentiation attempt. Answer 6-t implies division by t
ii	$\begin{aligned} & s=\int \mathrm{vd} t \\ & s=\int 6 t-t^{2} \mathrm{~d} t \\ & s=3 t^{2}-t^{3} / 3(+c) \\ & t=0, v=0, c=0 \\ & t=3, s=3 \times 3^{2}-3^{3} / 3 \\ & s=18 \mathrm{~m} \end{aligned}$	$\begin{aligned} & \text { M1* } \\ & \text { A1 } \\ & \text { B1 } \\ & \text { D*M1 } \\ & \text { A1 } \\ & {[5]} \end{aligned}$	Integration attempt on v Award if limits 0,3 used Requires earlier integration Does not require B1 to be earned.
iii	$\begin{aligned} & \text { Distance remaining }=100-18)=82 \\ & \text { Total time }=3+82 / 9 \\ & T=12.1 \mathrm{~s} \quad(121 / 9) \end{aligned}$	$\begin{aligned} & \text { B1 } \\ & \text { M1 } \\ & \text { A1 } \\ & {[3]} \end{aligned}$	Numerator not 100 Not 109/9
iv	$\begin{aligned} & \text { Distance before slows }=18+(22-3) \times 9 \\ & \text { Distance while decelerating }=200-189=11 \\ & 11=9 t-0.3 t^{2} \text { or } 11=(9+8.23) t / 2 \text { or } 8.23=9- \\ & 0.6 t \\ & t=1.28 \quad(1.2765 . ., \text { accept } 1.3) \\ & T=23.3 \mathrm{~s} \text { (23.276..) } \end{aligned}$	$\begin{aligned} & \text { M1* } \\ & \text { A1 } \\ & \text { D*M1 } \\ & \text { A1 } \\ & \text { D*M1 } \\ & \text { A1 } \\ & \text { A1 } \\ & {[7]} \end{aligned}$	($=189 \mathrm{~m}$) Two sub-regions considered Accept 10.99. 10.9 penalise -1PA. Uses $s=u t-0.5 \times 0.6 t^{2}$, or $v^{2}=u^{2}-2 \times 0.6 \mathrm{~s}$ with $s=(u+v) t / 2 \text { or } v=u+a t$ Finds t. (If QE, it must have 3 terms and smaller positive root chosen.)

