4728

Mark Scheme

June 2009

4728 Mechanics 1

1 i	$x^{2} + (3x)^{2} = 6^{2}$ $10x^{2} = 36$ x = 1.9(0) (1.8973)	M1 A1 A1 [3]	Using Pythagoras, 2 squared terms May be implied Not surd form unless rationalised $(3\sqrt{10})/5$, $(6\sqrt{10})/10$
ii	$ \tan\theta = 3x/x (= 3 \times 1.9/1.9) = 3 $ $ \theta = 71.6^{\circ} (71.565) $	M1 A2 [3]	Must target correct angle. Accept sin $\theta = 3 \times 1.9/6$ or $\cos \theta = 1.9/6$ which give $\theta = 71.8^{\circ}$, $\theta = 71.5^{\circ}$ respectively, A1. SR $\theta = 71.6^{\circ}$ from $\tan \theta = 3x/x$ if x is incorrect; x used A1, no evidence of x used A2
2 i		B1 B1 [2]	Inverted V shape with straight lines. Starts at origin, ends on <i>t</i> -axis, or horizontal axis if no labelling evident
ii	6 = 3v/2 $v = 4 \text{ ms}^{-1}$	M1 A1 A1 [3]	Not awarded if special (right angled, isosceles) triangle assumed, or s = (u+v)t/2, or max v at specific t.
iii	T accn = $4/2.4$ or s accn = $16/(2x2.4)$ T accn = $12/3$ s or s accn = $10/3$ Deceleration = $4/(3 - 12/3)$ or $16/2(6-10/3)$ Deceleration = 3 ms^{-2}	M1* A1 D*M1 A1 [4]	Uses $t = v/a$ or $s = v^2/2a$. May be implied Accept 4/(3 - 1.67) or 16/2(6-3.33) Accept 3.01; award however $v = 4$ obtained in (ii). $a = -3$ gets A0.
3 i	$\begin{array}{l} 0.8gsin30\\ 0.8x0.2\\ 0.8 \times 9.8sin30 - T = 0.8x0.2\\ T = 3.76 \text{ N} \end{array} \qquad \text{AG} \end{array}$	B1 B1 M1 A1 [4]	Not for 3.92 stated without justification Or 0.16 Uses N2L // to slope, 3 non-zero terms, inc <i>ma</i> Not awarded if initial B1 withheld.
ii	$3.76 - F = 3 \times 0.2$ F = 3.16 $3.16 = \mu x 3 \times 9.8$ $\mu = 0.107$ (0.10748)	M1 A1 A1 M1 A1 [5]	Uses N2L, B alone, 3 non-zero terms Needs <i>correct value</i> of <i>T</i> . May be implied. Uses $F = \mu R$ (Accept with $R = 3$, but not with $R=0.8g(\cos 30), F=0.6, F=3.76, F = f(\max P)$) Not 0.11, 0.108 (unless it comes from using g=9.81 consistently through question.

physicsandmathstutor.com

4728

Mark Scheme

June 2009

4 i	$v^2 = 7^2 - 2 \times 9.8 \times 2.1$ $v = 2.8 \text{ ms}^{-1}$	M1 A1 A1	Uses $v^2 = u^2 - 2gs$. Accept $7^2 = u^2 + 2gs$
ii	v = 0 $0^2 = 7^2 - 2 \times 9.8s$ s = 2.5 m	[3] B1 M1 A1 [3]	Velocity = 0 at greatest height Uses $0 = u^2 - 2gs$. Accept $7^2 = 2 \times 9.8s$.
iii	v = -5.7 (or $t = 0.71$ oef to reach greatest height) -5.7 = 7 - 9.8t or $5.7 = (0+) 9.8Tt = 1.3(0)$ s (1.2959)	B1 M1 A1 [3]	Allows for change of direction Uses $v = u + \text{or} - gt$. Not 1.29 unless obtained from g=9.81 consistently
5 i	$0.5 \times 6 = 0.5v + m(v+1)$ 3 = 0.5v + mv + m v(m + 0.5) = -m + 3 AG	M1 A1 A1 [3]	Uses CoLM. Includes g throughout MR-1
ii	Momentum before = +/- $(4m - 0.5 \times 2)$ +/- $(4m - 0.5 \times 2) = mv + 0.5(v+1)$ $4m - 0.5 \times 2 = mv + 0.5(v+1)$ v(m+0.5) = 4m - 1.5	B1 M1 A1 A1 [4]	Includes g throughout MR-1 Needs opposite directions in CoLM on "before" side only. RHS in format am + b or b + am. Ignore values for a and b if quoted.
iii	4m - 1.5 = -m + 3 5m = 4.5 m = 0.9 kg $0.9 + v(0.9+0.5) = 3 \text{ or } 4 \times 0.9 - 1.5 =$ v(0.9+0.5) v = (3-0.9)/(0.9+0.5) = 2.1/1.4 $v = 1.5 \text{ ms}^{-1}$	M1 A1 M1 A1 [4]	Attempts to obtain eqn in 1 variable from answers in (i) and (ii) Ignore $m = -0.5$ if seen Substitutes for $m=0.9$ in any m , v equation obtained earlier.
6 ia b	Perp = $10\cos 20$ (= 9.3967 or 9.4) // = $10\sin 20$ (= 3.4202) $\mu = 10\sin 20/10\cos 20 = \tan 20$ (= 3.42/9.4) $\mu = 0.364$ (0.36397) AG	B1 B1 [2] M1 A1 [2]	Includes g, MR -1 in part (i). Accept –ve values. Must use $ F = \mu R $ Accept after inclusion of g twice
ii	No misread, and resolving of 10 and T required $R = 10\cos 20 + T\cos 45$ $F = T\cos 45 - 10\sin 20$ or $T\cos 45 = \mu R + 10\sin 20$ $T\cos 45 - 3.42 = 0.364(9.4 + T\cos 45)$ 0.707T - 3.42 = 3.42 + 0.257T 0.45T = 6.84 T = 15.2 N (15.209)	M1* A1 M1* A1 D*M1 A1 A1 [7]	3 term equation perp plane, 2 unknowns 9.4 + 0.707T (accept 9.4+.71T) 3 term equation // plane, 2 unknowns 0.707T - 3.42 (accept 0.71T - 3.4) Substitutes for F and R in F=0.364R Award final A1 only for T = 149 N after using 10g for weight

physicsandmathstutor.com

4728

Mark Scheme

June 2009

7 i	a = dv/dt $a = 6 - 2t \text{ ms}^{-2}$	M1 A1 [2]	Differentiation attempt. Answer 6- <i>t</i> implies division by <i>t</i>
ii	$s = \int vdt$ $s = \int 6t - t^{2} dt$ $s = 3 t^{2} - t^{3}/3 (+c)$ t = 0, v = 0, c = 0 $t = 3, s = 3x3^{2} - 3^{3}/3$ s = 18 m AG	M1* A1 B1 D*M1 A1 [5]	Integration attempt on v Award if limits 0,3 used Requires earlier integration Does not require B1 to be earned.
iii	Distance remaining (= $100 - 18$) = 82 Total time = $3 + 82/9$ $T = 12.1$ s ($12 \ 1/9$)	B1 M1 A1 [3]	Numerator not 100 Not 109/9
iv	Distance before slows = $18 + (22 - 3)x9$ Distance while decelerating = $200 - 189 = 11$ $11 = 9t - 0.3t^2$ or $11 = (9+8.23)t/2$ or $8.23 = 9-0.6t$ t = 1.28 (1.2765, accept 1.3) T = 23.3 s (23.276)	M1* A1 D*M1 A1 D*M1 A1 A1 [7]	(=189 m) Two sub-regions considered Accept 10.99. 10.9 penalise -1PA. Uses $s = ut - 0.5x0.6t^2$, or $v^2 = u^2 - 2x0.6s$ with s = (u+v)t/2 or $v = u+atFinds t. (If QE, it must have 3 terms andsmaller positive root chosen.)$